

ICT AND E-INFRASTRUCTURES FOR R&D

Fernando Liello Università degli Studi di Trieste & GARR

Fernando Liello

World-class research facilities

Are extremely expensive

- As a consequence cannot be duplicated
- Attract scientists from all over the world
- Often HAVE to be in remote locations
- Travelling difficulties and Social impact are usually underestimated
- Data availability in quasi-real-time is vital
- ICT and e-Infrastructures can contribute to partially overcome these difficulties

Pierre Auger Observatory

Auger Southern Observatory

"Pampa Amarilla" Malargüe (Argentina)

35°S latitude 69°W longitude ≈1400 m height ≈875 g/cm²

• Very low population density (< 0.1/km²)

• Very good atmospheric conditions (clouds, aerosol...)

Plan for a future Northern Observatory in USA

Two Observatories in Chile

Cerro Armazones (OCA)

Cerro Paranal (ESO)

3 Nov 2010

Fernando Liello

European Organisation for Astronomical Research in the he Southern Hemisphere

The ESO Sites

Observatories' Area

3 Nov 2010

Fernando Liello

The Options

- Microwave link to the connect with a "traditional" service provider
 - Limited capacity
 - Limited to data transfer only
 - Very limited Growth capability
- State of the Art
 - Create or Extend a fibre infrastructure to connect the Observatories
 - Develop services to allow a better interaction between "Local" and "Remote" Scientists

Solution in Argentina

AugerAccess

- To acquire and extend a physical infrastructure to connect Malargüe to Buenos Aires
- To develop services to
 - Remote monitor the observatory
 - Manage the data-taking
 - Distribute the collected data in real-time

Solution in Chile

EVALSO

- To build a physical infrastructure to connect Paranal and OCA observatories to a Antofagasta
- To acquire long-term access to state-of-the art communication channels between Antofagasta and Santiago and a distribution infrastructure in Santiago
- To develop services to
 - Distribute the collected data in quasi-real-time
 - Allow remote effective interaction between local crew and remote scientists
 - Investigate the feasibility of new observing modes

Coordinated Approach

- Integrate the above mentioned infrastructures with the infrastructures of InnovaRed and REUNA
- Cooperate with ALICE & ALICE2
 - To create and maintain a continental-wide data communication infrastructure building on the experience of the European GEANT
- Have common physical fibre infrastructures wherever possible

Network Infrastructure

Submarine Cables 2008

The Weaknesses of the System

- There are obvious bottlenecks in the worldwide research network
- Satellites are NOT a solution
- Connect through USA is NOT a solution
 - It is vital to upgrade the direct links
- A wide range of initiatives can only be successful if the services provided by the integrated infrastructures of the NRENs and Regional backbones are available

Final Considerations

Science is a two-way road

- Connectivity is ALWAYS beneficial to both sides
- Improve NRENs infrastructures and guarantee their sustainability
- Improve the Intercontinental Connectivity
 - governmental and funding agencies support is essential
 - ... but synergy with commercial enterprises is what will make the difference

Specifically in Latin America

- Produce a survey of the research facilities that would benefit from better communication infrastructures
- Extend the infrastructure programs to properly connect these facilities at the national and international level
- Make possible a quantum leap in intercontinental connectivity infrastructures